企业要实现管理决策,一定要先建数据仓库再做BI?

通常意义的数据库,指各个业务系统所存储的数据集,其作用是籍于业务系统流程所产生的数据,利于各流程所产生的数据之存储。
数据仓库则为满足决策分析而建立,其面向主题的设计,将会因数据的特性不同而有所增减,如数据间的相容性与互斥性,数据仓库的数据容量将是业务数据库的五倍以上。
一般说来,数据仓库为减少对业务数据库的干扰,原则上要单独建立。他借助于数据库实现。如关系型数据库,多维数据库、内存数据库等。这些都可以作为数据仓库来使用,
数据仓库的建立,有以下几个主要方面工作:
①业务数据进行整合,②主数据管理,③元数据管理,④数据质量管理,⑤数据清洗、转换,⑥数据装载,⑦分主题建模等,最终支持各级管理者的数据分析、业务预测、决策。
各级管理者以数据仓库为本,经各种查询分析工具(Query/Report Tools)、联机分析处理(OLAP)工具或是数据挖掘(DataMining)工具加上决策者的行业知识(Industry Knowledge),从数据仓库中获得有用的信息,进而帮助企业获利,提高生产力与竞争力。
BI项目带有非常强烈的咨询服务特性。是发现问题、找出规律、预测将来,发掘新知识新模式,达到真正的智能效果。
商业智能不是简单的报表和漂亮的图形,其主要考量的是模型交付能力及工具软件的开放性。
面对庞大的数据,提高信息的利用率,快速准确地找出需要的信息,做出正确的决策,是商业智能发展的驱动力。硬件上的大容量存储技术、并行处理器技术,软件挖掘工具、数据仓库环境的管理工具、Internet、大数据预处理等技术的成熟,以及国产化的扩展能力,使得商业智能再次成为各级管理组织研究和应用的热点。